GCSE Mathematics (9–1) Practice Tests Set 9 – Paper 3H mark scheme

Quest	tion	Working	Answer	Mark		Notes
1	(a)	$(26.72)^2$ or $\frac{15775.36}{22.09}$	714.1(40335)	2	M1 A1	for 26.72 or 15775.36 or 22.09
	(b)		714	1	B1	ft if at least 4 significant figures in (a)
2		$60 \times \frac{5}{6}$	50	2	M1	
					A1	NB: $\frac{50}{60}$ gains M1 A0
3	(a)	(-1,6),(0,4),(1,2),(2,0),(3,-2)	correct line between $x = -1$ and $x = 3$	3	B3	for a correct line between $x = -1$ and $x = 3$ If not B3 then award B2 for a straight line segment through at least 3 of $(-1, 6), (0, 4), (1, 2), (2, 0), (3, -2)$ OR for all of (-1, 6), (0, 4), (1, 2), (2, 0), (3, -2) plotted and not joined OR for a line drawn through $(0, 4)$ with a clear attempt at a gradient of -2 (eg a line through $(0, 4)$ and $(0.5, 2)$ If not B2 then award B1 for at least 2 correct points stated or plotted (may be in a table); ignore any incorrect points either plotted or evaluated OR for a line drawn with negative gradient through (0, 4) OR for a straight line with gradient -2
	(b)		(1.5, 1) oe	1	B1	for (1.5, 1) or ft from (a)

Question	Working	Answer	Mark		Notes
4	E.g. $\frac{x}{60} = \frac{12}{16}$ oe or $12: 16 = x: 60$ oe or $\frac{12 \times 60}{16}$ oe or $\frac{24 \times 60}{32}$ oe	45	2	M1	for a correct equation (accept ratios) or a correct calculation
				A1	cao
5 (a)	$\frac{360}{n} = 240e \text{or} \frac{360}{24} \text{or} \frac{180(n-2)}{24} = 180(n-2)$	15	2	M1	for a correct equation or a correct calculation
	$\frac{180 - \frac{180(n-2)}{n} = 24 \text{ or } \frac{180(n-2)}{n} = 156 \text{ or}}{(2 \times 5 - 4) \times 90 \ (=540) \text{ or } (5 - 2) \times 180 \ (=540)}$			A1	cao
(b)	$(2 \times 5 - 4) \times 90 \ (=540) \ or \ (5 - 2) \times 180 \ (=540)$	95	3	M1	Complete method to find sum of interior angles.
	540 - (90 + 137 + 90 + 128) or $540 - 445$			M1	dep
				A1	cao SC : If no marks awarded then award B1 for $137 + 128 + 90 + 90 + t = m$ oe or m - (137 + 128 + 90 + 90) or $m - 445where m > 360$
	Alternative scheme – using exterior angles				
	$2 \times (180 - 90) + (180 - 137) + (180 - 128) + (180 - t) = 360$ or $90 + 43 + 90 + 52 + 180 - t = 360$ oe	95	3	M1	for a correct equation using exterior angles
	455 - 360 (= t) or $90 + 43 + 90 + 52 + 180 - 360 (= t)oe$			M1	(dep) for isolating <i>t</i> on one side of the equation
				A1	cao

GCSE Mathematics (9–1) Practice Tests Set 9 – Paper 3H mark scheme 2

Qu	Question Working Answer Mark		Notes		
6	(a)		4-6	1	B1
	(b)	$2 \times 5 + 5 \times 12 + 8 \times 10 + 11 \times 4 + 14 \times 1$ or 10 + 60 + 80 + 44 + 14 (= 208)	6.5	4	M2 for at least 4 correct products added (need r be evaluated) If not M2 then award M1 for consistent use of value within interv (including end points) for at least 4 product which must be added OR correct mid-points used for at least 4 product and not added
		$\frac{2 \times 5 + 5 \times 12 + 8 \times 10 + 11 \times 4 + 14 \times 1}{5 + 12 + 10 + 4 + 1} \left(=\frac{208}{32}\right)$			M1 dep on at least M1 Allow division by their $\sum f$ provided addition or total under column seen
					A1 for 6.5 or $6\frac{1}{2}$ allow 6 or 7 if 6.5 oe seen or $208 \div 32$ seen

Question	Working	Answer	Mark			Notes
7	$x^2 + 11^2 = 15^2$ or $15^2 - 11^2$ oe	10.2	3	M1	for a correct use of Pythagoras's theorem dep on M1	M1 for an angle found from a correct method (42.8, 47.1) and used with a correct trig statement with x eg. sin $42.8 = \frac{x}{15}$ M1 for correct trig statement with x
	$\sqrt{15^2 - 11^2}$ or $\sqrt{104}$ or $2\sqrt{26}$			A1	-	the subject eg. $(x =)$ 15 × sin 42.8 ange 10.19 – 10.2

Question		Working	Answer	Mark	Notes
8	(a)	$y = \frac{20 - 4x}{5}$ or $y = \frac{20}{5} - \frac{4}{5}x$	$-\frac{4}{5}$ oe	2	M1 for correct rearrangement of equation for term in x (condone any errors in constant term)A1
	(b)	y = mx + 4 or y = 2x + c	y = 2x + 4	2	M1 ft "4" from (a) m and c may be left as letters or shown as any values (c may be 0) OR for an answer of $2x + 4$ or $M = 2x + 4$
					A1 for $y = 2x + 4$ oe
9	(a) (i)		102	1	B1
	(ii)			1	B1 (dep on B1 in (i)) for <u>opposite angles</u> of a <u>cyclic</u> <u>quadrilateral</u> add up to 180°
	(b)	angle $RSQ = 62$ or angle $PRQ = (180 - 62 - 78)$ (=40)	40	2	M1 ft from (a) for "102" – 62 may be marked on the diagram A1
10	(a)	(CF =) 44	350	2	M1 Stated or marked on graph, or corresponding vertical line marked. Also allow 44.5 A1 Allow 345 – 355
	(b)	80 (may be seen on graph)	8	2	M1 for use of the graph at 500 calories (can be indicated by a
	(0)	oo (may be seen on graph)	0		A1 N1 For use of the graph at 500 calories (call be indicated by a vertical line from 500 to the curve)

GCSE Mathematics (9–1) Practice Tests Set 9 – Paper 3H mark scheme 5

Question	Working	Answer	Mark	Notes			
11 (a		<i>p</i> < 28	1	B1			
(b	$q^{2} > \frac{9}{16} \text{ oe or } q > \sqrt{\frac{9}{16}} \text{ or } (\pm) 4q > 3 \text{ or } \frac{3}{4} \text{ oe}$ or $(4q-3)(4q+3) > 0 \text{ or } \frac{0 \pm \sqrt{0-4 \times 16 \times (-9)}}{2 \times 16}$	$q < -\frac{3}{4}$ or $q > \frac{3}{4}$	3	M1 Allow as equations or incorrect inequality sign			
	3 3 3 9			M1 for finding both values.			
	$\frac{3}{4}$ and $-\frac{3}{4}$ or or $\pm \frac{3}{4}$ or or $\pm \sqrt{\frac{9}{16}}$			A1 for both correct inequalities			
12 (a	$\pi \times 4^2 \times 12$	603	2	M1 Accept 3.14 or better for π			
				A1 for answer in range $603 - 603.3$			
(b) $\frac{21}{12}$ oe (=1.75) or $\frac{12}{21}$ oe (=0.571)	14	2	M1 for the correct linear scale factor or a correct equation (may be seen in ratio form)			
	or $\frac{12}{8}$ oe (= 1.5) or $\frac{8}{12}$ oe (=0.666) or $\frac{d}{21} = \frac{8}{12}$			A1			
(c	E.g. $\left(\frac{h}{12}\right)^3 = \frac{64V}{V}$ or $\left(\frac{h}{12}\right)^3 = 64$ or $\sqrt[3]{64}$ (= 4)	48	3	M1 Correct equation for height or correct expression for scale factor. ft from (a) if a value is used for the volume.			
	$12 \times \sqrt[3]{64}$ or 12×4 or $\sqrt[3]{12^3 \times 64}$ oe or			M1 for a correct expression for height.			
	$\frac{"603"\times 64}{\pi \times (4 \times \sqrt[3]{64})^2}$			A1			

Question	Working	Answer	Mark		Notes
13 (a)	E.g. 13 300 ÷ 0.76	17 500	3	M2	If not M2 then award M1 for $x \times 0.76 = 13\ 300\ \text{or}\ 13\ 300 \div 76$
					NB: Accept $1 - 0.24$ in place of 0.76
				A1	NB: An answer of 16 492 scores no marks
(b)	E.g. 13 $300(1-x)^3 = 6500$ or 13 $300y^3 = 6500$	21.2	3	M1	for a correct equation condone use of $(1 - x)^4$ or y^4 accept x% or y% in equation
	<u>[6500</u>			M1	condone use of 4 th root rather than cube root
	$\sqrt[3]{\frac{6500}{13300}}$ (=0.787) or			A1	for an answer in the range $21.2 - 21.24$
	$1 - \sqrt[3]{\frac{6500}{13300}} (=0.212)$				SC: If no marks scored then award B2 for an answer of 16.38 – 16.4 (from using 4 years)
	, 13.5 (27 9)			M1	correct expression for x^2
	$x^{2} = \frac{13.5}{6} \left(=\frac{27}{12} = \frac{9}{4}\right)$			A1	dep on at least M1 scored

Question	Working	Answer	Mark	Notes
14 (a)	$\frac{1}{6} \times \frac{1}{6} \left(= \frac{1}{36} \right)$	$\frac{3}{36}$ oe	2	M1 or for a fully correct sample space with (3,1) (1,3) (2,2) selected or $\frac{x}{36}$ where $x < 36$ A1 for $\frac{3}{36}$ oe or 0.083(3) or 8.3(3)%
(b)	$\left(1-\frac{3}{36}\right)^3$ or $\left(\frac{33}{36}\right)^3$ or $\left(\frac{11}{12}\right)^3$	$\frac{1331}{1728}$ oe		M1 ft $\frac{3}{36}$ from (a) for $(1-(a))^3$ provided answer to (a) < 1 A1 for $\frac{1331}{1728}$ oe accept 0.77 to 0.771

Question	Working	Answer	Ma	rk	Notes
15	$SQ^2 = 8^2 + 12^2 - 2 \times 8 \times 12 \times \cos 120^\circ$	91.4	6	M1	If this mark is awarded then ft on the remaining M marks
	$(SQ) = \sqrt{304}$			M1	for correct order of operations e.g. 64
					+ 144 + 96 or 304 or 17.4 or 4√19
	$\frac{\sin R}{\sqrt{304}} = \frac{\sin 27^{\circ}}{9}$			M1	
	$R = \sin^{-1}\left(\frac{\sin 27^\circ \times \sqrt{304}}{9}\right)$			M1	can be implied by 61.5833
	61.58			A1	for 61.58 - 61.6
				B1	ft dep M3 180 – "61.6" – 27
					Total 6 marks

Question	l l	Vorking	Answer	Mark	Notes
16	$5x^{2} - 3x - 4(=0) \text{ or } 5x^{2} - 4 = 3x \text{ oe}$ $\frac{-(-3) \pm \sqrt{(-3)^{2} - 4 \times 5 \times (-4)}}{2 \times (5)}$ or $\frac{3 \pm \sqrt{89}}{10}$	$5y^{2} - 49y + 80(=0) \text{ or } 5y^{2} - 49y = -80 \text{ oe}$ $\frac{-(-49) \pm \sqrt{(-49)^{2} - 4 \times 5 \times 80}}{2 \times 5}$ or $\frac{49 \pm \sqrt{801}}{10}$	x = 1.24 y = 7.73 x = -0.64 y = 2.07	4	 M1 Correct quadratic (condone = 0 missing). M1 Correct substitution into quadratic formula, which may be partially
	or $\frac{10}{10}$ (x =) -0.64339 or (x =) 1.24339	or $\frac{10}{10}$ (y =) 2.06980 or (y =) 7.73019			evaluated. Accept 3^2 or -3^2 Accept 49^2 or -49^2 A1 (dep on first M1) for both values of x or both values of y correct to at least 2 dp
					A1 (dep on first M1) for correct x and y values, correctly paired.
17	$\frac{5\sqrt{2}-3\sqrt{2}}{4}$		$\frac{1}{\sqrt{2}}$	3	M1 for $5\sqrt{2}$ and $3\sqrt{2}$
	E.g. $\frac{2\sqrt{2}}{4}$ or $\frac{5\sqrt{2}-3\sqrt{2}}{4} \times \frac{\sqrt{2}}{\sqrt{2}}$				M1 dep on first M1 for method to rationalise the denominator
					A1 (dep on M2) for correct steps to correct answer

Question	Working	Answer	Mark		Notes
18 (a	$\frac{1}{2} \times 7 \times 10 \times \sin 105$	33.8	2	M1	
	$\frac{-1}{2}$ × 7×10× sm 105			A1	for answer in range 33.8 – 33.81
(b	$(AB^{2} =) 7^{2} + 10^{2} - 2 \times 7 \times 10 \times \cos(105)$	45.2	5	M1	
	$(AB =)\sqrt{100 + 4936.2(346)}$ $\left(=\sqrt{185.2(346)} = 13.6\right)$			M1	for correct order of operations and square root
	$\frac{10}{\sin A} = \frac{"13.6"}{\sin 105} \text{ oe}$ or $10^2 = 7^2 + "13.6"^2 - 2 \times 7 \times "13.6" \times \cos A$			M1	(dep on 1 st M1) ft 13.6 ft 33.8 dep on M1 in (a)
	or $\frac{1}{2} \times 7 \times "13.6" \times \sin A (= 33.8(074))$ or E.g. $\frac{\sin B}{7} = \frac{\sin 105}{"13.6"}$ or angle $B = 29.7$				or for a start to a method to find angle <i>B</i>
	E.g. sin $A = \frac{10 \sin 105}{"13.6"} \left(= \frac{9.65(925)}{"13.6"} = 0.7(09712) \right)$ or			M1	for a correct expression or value for $sinA$ or $cosA$ or A
	$\sin A = \frac{33.8}{\frac{1}{2} \times 7 \times "13.6"} \left(= \frac{33.8}{47.6(353)} = 0.7(09712) \right)$				
	or $\cos A = \frac{7^2 + "13.6"^2 - 10^2}{2 \times 7 \times "13.6"} (= 0.7(03))$				
	or $180 - 105 - \sin^{-1} \left(\frac{\sin 105}{"13.6"} \times 7 \right)$				
				A1	for answer in range 45.2 to 45.3

Question	Working	Answer	Mark	Notes
19	$\frac{3(2x+1)(2x-1)}{(3x+4)(2x-1)}$	$\frac{3(2x+1)}{3x+4}$	3	M1 for $(2x + 1)(2x - 1)$ or $(6x + 3)(2x - 1)$
	$(3\lambda + \tau)(2\lambda - 1)$			or $(2x+1)(6x-3)$
				M1 for $(3x + 4)(2x - 1)$ or $(-3x - 4)(1 - 2x)$
				A1 for $\frac{3(2x+1)}{3x+4}$, accept $\frac{6x+3}{3x+4}$

Overtien	Skill	Mean	Max	Mean	A 1 1	•	0	7	c	E	
Question	tested	score	score	% 97	ALL	9	8	7	6	5	4
Q01a Q01b		1.94 0.92	2	97 92		-	-				
Q015 Q02		1.66	1	92 83		-	-				
Q02 Q03a		2.75	2 3	83 92		-	-				
Q03a Q03b		0.80	3 1	92 80		-	-				
Q030 Q04		1.63	2	80		-	-				
Q04 Q05a		1.61	2	81		-	-				
Q05b		2.59	2	86		_	-				
Q06a		0.84	1	84		_	_				
Q06b		3.21	4	80		_	_				
Q07		2.58	3	86		-	-				
Q08a		1.14	2	57		-	-				
Q08b		1.11	2	56		_	_				
Q09a		1.09	2	55		-	-				
Q09b		1.20	2	60		-	-				
Q10a		1.33	2	67		-	-				
Q10b		1.67	2	84		-	-				
Q11a		0.73	1	73		-	-				
Q11b		1.04	3	35		-	-				
Q12a		1.76	2	88		-	-				
Q12b		1.47	2	74		-	-				
Q12c		1.26	3	42		-	-				
Q13a		1.98	3	66		-	-				
Q13b		1.09	3	36		-	-				
Q14a		0.98	2	49		-	-				
Q14b		0.41	2	21		-	-				
Q15		2.00	4	50		-	-				
Q16		1.29	3	43		-	-				
Q17		1.70	2	85		-	-				
Q18a		2.71	5	54		-	-				
Q18b		1.16	3	39		-	-				
Q19		3.48	6	58		-	-				
		51.13	80	64		70	61	52	43	34	26
GCSE Math	nematics (9	9–1) Practic	e Tests Set	9 – Paper	3H mark sch	eme	12				

9	8	7	6	5	4	3
65	56	47	39	30	21	16